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1 Introduction 

Scientific codes are usually parallelized by partitioning a grid among processors. Irregular grids (see figure 1) 

must be partitioned carefully in order to balance the workload. Solution methods for time-varying prob- 

lems often change the grid as the computation progresses; furthermore, the grid structure is not generally 

manifest until load-time, when the code reads the problem from a file. These characteristics make paral- 

lelization nontrivial. Our ability to map such problems well depends on our ability to analytically model the 

computation’s execution time and compare different candidate partitions. 

This paper outlines a framework for treating these problems. We illustrate the method on a duid flow 

computation which periodically redefines its grid, giving rise to a sequence of grid structures. The  compu- 

tation’s execution time is modeled analytically as a function of grid placement, partition, and the compu- 

tation’s logical structure. Model constants are estimated by measuring the execution time of critical code 

fragments, We use the model to construct partition schedules, and show that the model accurately predicts 

performance--on large problems the model is within 3% of measured performance. The modeling approach 

is not dependent on numerical particulars of the fluid’s problem. Similar approaches on other codes should 

produce good results as well. 

2 Problem Particulars 

We illustrate the method using a numerical solution of a wave equation: 

aU aU 
at az (1) - = -u-. 

u(z, t )  represents fluid density a t  position z and time t ;  equation (1) is an idealized law governing the change 

in fluid density as a function of position and time. We numerically solve for u over [O, 11 by imposing a 

three-tiered hierarchy of grids on [0,1]. A grid a t  level i (z = 0,1, or 2) has points spaced uniformly Ah/2’ 

apart. As  shown in figure 1, a single grid a t  level 0 spans [0,1]; a multiplicity of grids may exist at levels 1 

and 2, provided that grids at  a shared level do not overlap, and each level 2 grid completely overlaps a level 

1 grid. We will refer to a hierarchical collection of such grids as a grid structure, to be distinguished from 

a single grid a t  some level. The higher level grids help to resolve rapidly changing features in the solution. 

These features tend to move as a function of time. Consequently, the size and position of the grids are 

typically changed periodically a3 the equation is integrated in t .  We will denote the resulting sequence of 

grid structures by G I , .  . . , G M .  The computation begins by integrating over grid structure GI; some number 

of time-steps later GI is replaced by Gz,  which in turn is later replaced by GJ, and so on. 

During a single time-step the solution procedure revolves around a routine, integrate(G, lvl, t ,  

G here is some contiguous grid a t  level lvl; equation (1) is integrated between t and t+At .  The A t ) .  
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Abstract 

Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top 

performance it is necessary to partition the grid so as to balance workload and minimize communica- 

tion/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the 

course of the computation, and is not known until load-time. Critical mapping and remapping decisions 

rest on our ability to accurately predict performance, given a description of a grid and its partition. This 

paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. 

The models we construct are shown empirically to be accurate, and are used to find optimal remapping 

schedules. 
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Figure 1: Three-tiered grid hierarchy for one-dimensional problem. The grid is partitioned using a scatter 

decomposition which assigns four subintervals t o  each of four processors. 

synthesized treatment of all grid levels is carried out recursively by routine update, shown as figure 2. To 

carry the solution ahead one time-step from t to t + At we call update with G being the entire level 0 

grid. Each level 1 grid is integrated twice, each level 2 grid four times. The computational workload is 

consequently intense in finely gridded regions. 

integrate computes u(z, t + At)  as a function of points close to  z at time t .  Consequently, parallelha- 

tion through domain partitioning requires inter-processor comniunication. If u(zl, t + At)  is computed by 

processor Pi and depends on a value u(zg, t )  computed by Pj, then P; and P, must communicate. In our 

solution a partition is semi-static, meaning that for each time-step a processor carries out computations 

in the same regions of the domain, until the partition is explicitly changed. This paradigm is used with 

dist.ributed memory architectures, and with shared memory architectures having a significant access cost 

differential between a processor's local memory and the shared memory.' The grid structure is distributed 

throughout the processor's local memories, with the shared memory being used only to exchange da ta  lying 

a t  partition boundaries. 

'While most shared memory architectures fall into this class, the Flex/32 on which we performed our experiments does not. 

This anomaly is due more to the delay in a local access than it is to fast global access. 
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update(G, l v l ,  t ,  A t )  { 

i n t e g r a t e ( G ,  l v l ,  t ,  A t ) ;  

i f  t h e r e  a r e  any l e v e l  l v l + l  g r i d s  above C 

For  a l l  l e v e l  l v l + l  g r i d s  G’ above C { 

update(@,  l v l + l  , t ,  ( A t ) / 2 >  ; 

update (G’, l v l + l  , t+ ( A t )  / 2 ,  ( A t ) / 2 )  ; 

1 
1 

Figure 2: Update function 

The requirement that  we partition a t  load-time and remap at  run-time prohibits the use of computa- 

tionally expensive partitioning algorithms. We consequently consider only two classes of partitions, binary 

partitions[2], and scatter decornpositions[4]. Binary partitioning explicitly balances workload by examining 

the grid structure and estimating the workload. A first ‘cut” finds the domain point where the sum of 

workload to the left equals (approximately) the sum of workload to the right. The resulting intervals are 

themselves split using the same balancing rule; the algorithm proceeds recursively, creating 2n intervals with 

approximately equal workload. Typically, one uses binary partitioning to create exactly as many intervals 

as there are processors. By contrast, scatter decomposition divides the domain into a large of number small, 

equi-length subintervals, and assigns an identical number of subintervals to each processor. Scatter decom- 

position balances workload statistically, and is less sensitive to dynamic changes in the workload. A grid 

structure can be partitioned using one of a variety of scatter decompositions which differ in the length of 

the subintervals. 

For any given grid structure we have a number of partitioning options. To optimize performance we must 

be able to predict t h e  computation’s execution time, as a function of grid structure and partition. This ability 

is iieeded particularly when making remapping decisions in response to a change in the grid structure-the 

tradeoffs between remapping costs and benefits can only be made if performance is accurately predicted. 

The section to follow outlines our approach to such modeling. 

All of our experiments use the Flex/32 multiprocessor[5] a t  the NASA Langley Research Center. The 

Flex/32 has eighteen processors available for parallel processing, a 4Mb shared memory, 2Mb local memory, 

and a small instruction cache for each processor. 
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loop  { 
b a r r i e r ;  

CopyInBoundary() ; 

update (GI 0, t , A t )  ; 

C o l l a t e s o l u t i o n 0  ; 

b a r r i e r ;  

CopyOutBoundary() ; 

t = t + A t ;  

b a r r i e r  ; 

} 

Figure 3: High-level view of time-step loop 

3 Analytic Model 

The analytic model exploits the fact that scientific codes spend the bulk of their processing time in loops, and 

that their synchronization patterns are regular. The model is loosely based on approaches outlined in [6,9]. 

Our approach is to identify the critical loops, and model each loop’s execution time parametrically. Model 

coefficients are estimated by measuring the loops’ execution times. A processor’s execution time (between 

synchronizations) on a given grid structure, under a given partition can be estimated by calculating the 

appropriate loop model parameters (e.g. number of loop iterations), and applying the performance model. 

System time between two synchronization points is computed as the maximum processor time between those 

points, plus a synclironization cost. 

We now illustrate this approach by application to the fluids problem. 

Figure 3 shows the sequence of routines called by a processor during one time-step. CopyInBoundary() 

copies from shared riiemory to local memory all the partition boundary data needed by the processor. The 

volume of data col~it . l l  is directly proportional to the iiuniber of subintervals assigrietl to that processor. 

update we have set’ii before. It calk a niultiprocessor version of i n t e g r a t e  that is careful to integrate 

only those points within the processor’s purview. Co l l a t eSo lu t ionO readies the processor for another 

time-step by copying (local to local) the “new” solution (at time t + At)  in the space reserved for the “old” 

solution (at time t). CopyOutBoundary() writes to shared memory all partition boundary data needed by 

other processors. Calls to b a r r i e r  synchronize the processors globally. The juxtaposition of barrier calls 

a t  the top and bottom of this sequence allows a control process to perform a niinor bit of necessarily serial 
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book-keeping. 

CopyInBoundary 0 and CopyOutBouadaryo both loop through a processor’s set of subintervals and 

copy nine floating point numbers for each. Our expectation that loop execution time is proportional to the 

number of subintervals is borne out with measurements. Flex/32 timers have a resolution of 20 msecs. Loop 

execution times were estimated by first isolating the loop’s code fragment in a separate, single-processor 

calibration program. Within that program we measure the time required to execute a large number of loop 

instances; our estimate (36 p-secs per point) is taken by averaging. By measuring loop execution times we 

accurately capture the compiler-dependent run-time overheads of array indexing and loop bounds checking. 

Co l l a t eSo lu t ionO’s  execution time is found in the same fashion. The per-point cost of a local to local 

copy is estimated at  27.9 p-secs. Timings for b a r r i e r  calls are found similarly, with the exception that all 

processors execute the calibration program. A barrier synchronization involving sixteen processors requires 

1.17 msecs. 

i n t e g r a t e 0  numerically integrates a single contiguous grid within a subregion. It first sets up some 

variables used within its loop, and then executes the loop. i n t e g r a t e o ’ s  execution time is consequently 

modeled as a linear function of the number of points being integrated. The slope and intercept of this 

function were estimated with a least-squares fit over a wide range of measurements; the fit was found to 

be tight. The loop startup cost (intercept) was determined to be 77 p-secs, and the per-point cost (slope) 

was 153.9 p-secs. The integration method is a variant of the Lax method[8], and requires ten floating point 

operations per point 

update 0 ’ s  execution time depends on the number and placement of grids within the processor’s subdo- 

mains. A grid that crosses a partition boundary is viewed by i n t e g r a t e ( )  as terminating at that boundary. 

To estimate update 0 ’ s  execution time under a given partition we need only identify the numbers and lengths 

of grids passed to i n t e g r a t e ( ) ,  and use its timing model. This process must note the recursive nature of 

update0 calls, arid weight integrate0 timings according to the number of times a grid is updated in a 

single t ime-s tep. 

Between the top and bottom barriers in figure 3 a control process may change the grid structure and 

deterniine whether to remap. This serial cost is 1.4 msecs. The control process supports a decision to remap 

by rebuilding a number of data structures. The amount of work is proportional to the number of subdomains 

in the partition (remember that scatter decompositions have more subdomains than processors): 95 p-secs 

per subdomain.2 A decision to remap is flagged in the shared memory, where the new partition is also 

specified. Upon release from the top barrier a processor checks the remapping flag (a test not shown in the 

figure). If a new mapping is specified, each processor executes the sequence below: 

l o u r  implementation computes this partition at load-time, as will be described in the next section. If  the new partition is 

calculated dynamically, an additional cost should be added here. 
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CopyOutOldSubintervale(); 

CopyInlJewPartit i on  () ; 

bar r i e r ;  

CopyInNewSubintervale (1 ; 

b a r r i e r ;  

The first copy routine simply dumps into shared memory all of the values it is responsible for under the old 

partition. The second copy routine reads the processor’s new partition, at  a cost of 106 p-secs per assigned 

subinterval. The third copy routine reads from shared memory the processor’s new set of values. The first 

and third copy routines require 30.1 p-secs for each point copied. 

The overall execution time is built up from individual processor timings. The ~ y s t e r n  execution time 

between two given barrier synchronizations is the maximum time taken by any processor between those bar- 

riers, plus the barrier costs. Given the processor timing models and knowledge of synchronization behavior, 

we are able to predict the time required by the system to perform a time-step. This quantity is multiplied 

by the number of time-steps the defining grid structure and partition are used; additional costs are included 
wherever a remapping is applied. The following section describes how we use the model to schedule problem 

remappings, and to evaluate remapping heuristics. 

4 Remapping Schedules 

We now apply the arialytic model t o  the problem of deciding when and how to remap. In an experimental 

environment, one run of a production code often looks much like another, differing only by a small pertur- 

bation of some parameter. I t  is sometimes reasonable then to  assume that an entire run’s sequence of grid 

structures is known at load-time. Under these circumstances we can determine a schedule of partitions which 

minimize the computation’s execution time. Under other circumstances the sequence of grid structures is 

created dynamically in response to the solution behavior. This precludes a priori scheduling of remappings, 

forcing one to use remapping heuristics. However, we can compare a posteriori the heuristic and optimal 

performance by observing and recording the sequence of grid structures, and then constructing an optimal 

a p o s t e r i o r i  schedule of remappings. 

Let G1, Gz,  . . . , Gn, denote the sequence of grid structures used in the course of solving a problem. Let 

si denote the number of the-s teps  during which G, is employed. G1 can be partitioned by binary dissection 

or by one of a number of scatter decompositions. If we use binary partioning on G,, and Gz is quite similar, 

we may decide to rctain GI’s partition for use on G 2 .  We may alternatively construct a binary partition 

tailored to Gz, or use a scatter decomposition. In  general, we may partition G j  using a binary partition 

tailored to Gj ,  we may use a binary partition tailored to some G,, i < j ,  or use some scatter decomposition. 

-a 

. 
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We let n, be the number of partitions we will consider for G,, and denote them by p(i, j )  for j = 1,. . . , ni. 

Finally, we let T ( i ,  j )  denote the time required to execute s i  time-steps using partition p(i, j )  on G;, and let 

Ci(jl, 3;) be the cost of remapping from partition p ( i , j l )  to partition p ( i +  1,  j z ) .  Note that this cost is zero 

if p(i, jl) is identical to p(i  + 1, 3;). Also note that C,(jl, h) depends on whether p(i + 1, j2) is computed at 

run-time, or is computed off-line and merely implemented at  run-time. When we compute schedules a priori 

we may assume that the partition is computed off-line. When computing a posteriori schedules, C,(i + 1, j 2 )  

should include the cost of computing p(i  + 1, jz )  a t  run-time. 

We use dynamic programming to determine a remapping schedule that mininiizes the overall execution 

time. The optimal cost function A ( i , j )  denotes the minimal remaining execution time, starting from G ,  

under partition p(i, 3). The principle of optimality states that 

I ~ ( i ,  j) i f i = M  

min 
1 I k 5 n,+l 

{C,(j, k) + A ( i  + 1, k)} if i # M 
A ( i ,  j )  = 

It  is straightforward to solve these equations by unraveling the recursion. The optimal schedule of partitions 

(and hence remapping schedule) is found in the usual way by backtracking. The j1 minimizing T(1, j) defines 

the first partition (i.e. p ( l , j l )  is the first partition). T ( 1 , j l )  is the minimal execution time possible, given 

the choice of partitions. The j z  minimizing minj{Cl( j l , j )  + A(2, j)} defines Gz’s partition. If p(2, j z )  is 

different from p ( 1 , j l )  then we remap to p(2, j z )  when the grid structure is changed to Gz. In like fashion the 

j3  minimizing min, (Cz(j2,  j )  + A ( 3 , j ) )  defines G3’s partition and the corresponding remapping decision, 

and so on. 

Let P,,,, be the niaximum number of partitions considered for use on any grid structure. The complexity 

of computing the schedule is O(MP:L,), once the T( i ,  j )  values are known. The complexity of estimating 

T ( i ,  j) is O(n. Size(G;)) ,  where n is the number of processors. 

Binary partition is a frequently cited technique for balancing irregular workload in a domain (e.g. [1,3]). 

Given its appealing properties, one is led to ask whether the partition scheduling approach outlined here is 

of any use-why should we even consider scatter decompositions? Why not simply tailor a binary partition 

for every grid structure? The answer is that scatter decompositions are better static partitions for dynamic 

workloads than are binary partitions. By using a binary partition one is forced to remap and suffer the 

attendant costs. Figure 4 illustrates a scenario where the optimal static scatter decomposition clearly 

outperforms any sort of dynamic remapping. Upon a large coarse grid (16384 points) we initially placed 

a level 1 grid with 2048 points, and a level 2 grid with 1024 points near the left end of the domain. For 

figure 4(a) this initial structure was then drifted to the right by six coarse-grid points, every 6 time-steps. 

We plot the average time-step execution time of (i) the worst scatter decomposition policy (one subdomain 

per processor), (ii) the policy of remapping using binary partitioning whenever a grid is changed, (iii) the 

optimal binary partitioning policy, (iv) the policy of using the initial binary partition throughout the entire 
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I )  Worst Sca t te r  (1 subdomain 8 processor) 
!I) Incessant Binary Partitioning 

Op! imq1 RinarJ I'artiti.onin 1;) lntial Dinar artitioning field 
i 
(v) Optimal Sca t te r  (a subdomains 8 processor) 

I 
1c z 30 AC 5- 

Grid S t ruc tu re  Sumber  

(a) Regridding every 6 steps 

600 

I 

10 20 30 40 50 

Grid S t ruc tu re  Number 

(b) Regridding every 24 steps 

Figure 4: Comparison of binary partitioning and scatter decompositions. 

computation, and (v) the optimal scatter decomposition policy (eight subdomains per processor). The same 

plots are made in figure 4(b) for the case where the grid structures are drifted 24 coarse-grid points every 24 

time-steps. It is important to note that these measurements include the cost of computing binary partitions 

a t  run-time. The grids which suffer this cost are clearly identified by spikes in the performance curve. Clearly 

the movement of grid structures forces frequent remapping, if we use binary partitioning. On the other hand, 

the overhead of remapping drives up its cost beyond that of a good scatter decomposition, but the worst 

scatter decomposition is quite bad. The remapping scheduling algorithm is able to discern whether, when, 

and which scatter decomposition to use. 

We incorporated the scheduling algorithm into the fluids code. At  load time the preprocessor reads in 

the full schedule of grid definitions, computes all T ( i ,  1 )  and C,(jl, j2), and solves the optimal cost equations 

to produce a partition schedule which is passed to the fluids code. In general it is possible to reduce the 

additional load-time delay by using the parallel processors themselves to compute the timing estimates and 

solve tlie optiinality equations. Alternatively, tlie scliedule can be calculated on a (cheap) front-end processor 

, 
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prior to loading the code on an time-accounted super-computer, such as the current generation of Crays, 

Cybers, or ETA-10s. 

5 Model Validation 

We validated the performance model on a set of grid structures which approximate those used in practice. 

On large problems we find the predicted values to be within 3% of measured performance; on small problems 

the model is within 8% of measured performance. 

To test the model’s robustness we generated grid structures which vary in size and density. Size is simply 

the number of coarse grid points; density refers t o  the frequency with which higher level grids appear. A grid 

structure having size N and density p is generated randomly, as follows. The  coarse grid with N points is 

immediately defined, any level 1 grid is dictated to have N/4 points, and any level 2 grid is dictated to have 

N / 1 6  points. Next we scan across the coarse grid, at each point performing a random trial which decides 

whether to begin a level one grid there. The trial compares p,” to a (0,l)  uniform random number- a level 

one grid is placed if the random number is smaller. In this case the scan point is advanced past the end of the 

newly defined grid, and the random trials resume. Level two grids are randomly placed above existing level 

one grids in entirely the same fashion, save that the probability threshold is increased to  p/(N/4). The  grid 

structure so constructed is taken to be GI. We specify that each grid structure be used for ten time-steps. 

GZ id constructed frorn GI by ‘drifting” every higher level grid ten coarse grid positions to the right. In 

general, G, is const rtictetl by d r i f h g  G,-l eight coarse grid positions. 

We compared predicted and measured execution times on problems indexed by size, and grid density. 

Large problems use 10382 coarse grid points, small problems use 2048. Sparse problems are generated with 

density factor p = 3, dense problems are created using p = 25. We randomly generated five different 

instances of each problem type, and tested each under five, sixteen-processor partition schedules. The 

Optimal partition schedule is obtained from the scheduling algorithm. On  these test problems the optimal 

schedule tended to remap frequently, using binary partitions (the optimal static scatter decomposition was 

very close to this iri performance). This is in stark constrast to the problem illustrated in figure 4; where 

the cost of computing the binary partition was computed a t  run-time. This coniparison serves to show that 

the major cost of rrninpping for this problem is not the da ta  movement, but the partition calculation. The 

other four partitions, labeled SD, are static scatter decompositions indexed by the number of subintervals 

t !ley assign to  each processor. The table below gives the maximum, and average percentage (absolute) 

deviation of the analytic model from measured performance on all problem types, under the five selected 

partitions. The greater accuracy seen on the large problems is due to the fact that  the large problems spend 

proportionally more time in the loops we carefully mocleled. The problems represented by this data span a 
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Large, Sparse 

avg max 

2.1 2.2 

0.1 0.1 

1.6 2 

0.4 0.4 

0.7 0.7 
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Large, D e n s e  Small, Sparse 

avg max avg max 

2.5 2.6 5.3 8.2 

0.8 1.3 3.7 4.8 

1.7 1.8 5.8 6.8 

1.1 1.1 7.1 8.0 

0.5 0.6 7.5 8.0 

Optimal 

SD 8 
SD 16 

I S D 3 2  

Small, D e n s e  

0.3 0.5 

2.7 3.4 

Table 1: Absolute (percentage) deviation of analytic model from measured performance. 

wide spectrum of behaviors. The large problem running times are an order of magnitude larger than those 

of the small problems. For a single problem the worst partition’s running time is usually at least twice as 

large as the best part ition’s. Both computation bound and communication bound partitions are represented. 

The data in table 1 gives us a high degree of confidence in the model, in its performance projections, and in 

the conclusions we may draw from its use. 

6 Summary and Conclusions 

The highly structured nature of many scientific codes make them well-suited for deterministic performance 

modeling. Most codes spend a large fraction of their time in a few loops-we can capture a parallel code’s 

overall performance by carefully modeling these loops’ behavior. This type of modeling is critically needed 

to solve the problem of mapping a dynamic, irregular computation onto a parallel computer. We have 

illustrated these points using a fluids code. We showed how the model can be used to optimally schedule 

problem remapping.. and showed that the model is accurate. 

Xlodels of the type we propose are useful in  a number of ways. For example, ndaptiue gridding schemes 

generate new grid atructures as a function of the solution behavior. A very real problem is the dynamic 

tlecisioii to remap or not in response to an unpredictable change in grid structure (see 171 for a treatment of 

rl,is problem), Our ability to accurately model performance allows us to evaluate the costs and benefits of 

reniapping, a t  run-t line. The analytic model can also be used in performance studies of remapping decision 

policies. \?‘e can nicasure the performance under a policy in a run, then construct a posteriori an optimal 

remapping schedule for that run. The optimal schedule gives a baseline against which the remapping decision 

policy can be judged 

The method we used to model the fluids problem depends only on the fact that  the code spends most of 

its time in a few easily identified loops, that we can parametrically model those loops’ performance, and that 

, 

. 
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the code rynchronirer in a regular fashion. A large number of ocientific coder have these same characteristics, 

and are therefore prombing candidater f a  modeling. 
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